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Abstract

The numerical Schwerz algorithm, [11, for solving
elliptic partial differentisl equstions is .
essentislly a block Geuss-Siedel method for inverting
& metrix equation. The numerical Schwarz algorithm

t
g = |21 O], 2 <150
o o

is only one variant of the method of overlapping
domains. This method yields matrix equations that
are related to the standard systems obtainec from
elliptic P.D.E.s., [2]. This psper snalyzes the use
of Jecobi splittings on these metrix equations.

.

1. The Linesr Systems
We consider the solution of the linear system
(1.1) Tx=b

where 7 is s pxp block matrix of the form

F G

1§
E, F., G© ‘
(1.2) T« [E2 F2 G,
o
, \Gp-l
& Fo
where
r .
el R, Fo- p-2 Rop-2
AL | R2p-2 T2p)
(1.3)
1 Ros

Fi* | Ros T2qa1 Roga| 251 5pd

t
L Reted T2ie2]

Gis[o 0],1<1<p-1
0 Ry

Esch of the matrices Ry and T; are ng x ny

.where 0 <ng <n, n & given integer, end

further, each ¥ is symmetric and non-singular.
The source vector b = [by, by, .., bplt where

By 5;:-2]
b, = s b = »
! 82] P a21:—1

(1.5) (853
= l<sigp-2
1 18aal '

L‘21+2

8; = nyx 1 column vector .

Systems (1.1) srise from the numerical solution of
elliptic psrtial differential equations by the method
of overlapping domains, cf. [1].

Associated with system (1.1) is

(1.6) T'st = b
where
P -3
R
2 R
(1.7) T = Rl \
\ Rop-2
LI
! R2p-2 T2p-1

(1.8)  b* = [8), B.eey Bppylt.
In [2], it was shown that ;f
Ts = b where s = [s),55.., s,,]t end
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(1.9)
X34
it LYY R
X3142
then

s' = [*l"‘S"‘a'xs""'x31’x3101"" 'pr'*Jm.l]t

1s & solution of T's* =b' .

Hence, s solution of (1.6) can be constructed from s
solution of (1.1). We consider first order iterative
®ethods for the solution of (1.1) and compere their
convergence rates to the corresponding iterstive

method for the solution of (1.6).

In particuler,

Jacobl splittings will be studied because of their
usefulness on parsllel computers such as a

multiprocessor.

The following theorem compares the eigenvalue of
T with those of T'. Wwe sdopt the notation A(Q) to
denote the set of eigenvalues of & matrix Q.

Theorem 1.1

-

_ p-1
MDe XTOUU AT

i=1
Proof:

21) LI

Suppose TX = K where S = (X ;)X 1pueuy X 1, t

Partioning Xy, 1 <1 <p, according to (1.3) we

have
X
s 1]' xpg’%p ] ,
3 ’39+l
s
ximx”w1 12<i<p-1
%3142
Hence,

(

then x35,0 = %35,3 8nd

To1 = Wy 0 = (Tpy = uldxy, o .

t
X = [xl,x3,x4,x6,.. S RS TIRTRD "Spd]

is an eigenvector of T' corresponding to eigenvalue .

2. ago_bl Methods
Consider s Jacobi splitting of (1.6), thet
is, 7' = M’ « N' where

E )
(2.1) Mo N . 0,
L Oyp-1
t
6 & 6

e

\\ -2

L t

G2p-2 F'Zp-.l -
This gives rise to a corresponding Jacobi splitting
T=M-Nin(1.1),

4
%

(2.2) M-N = \

- p o

where
! 0 Op-2 0

Al ® 14 %g ]

L 0 0, o o,
D242

(2.3) ) AiE DZi—l '2£i£p_1
_ D3
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(2.4) Wy ® i{‘ ‘21 254 ¢p-1,
G1  Ba S
t
c?iol 510
(4] 0
(2.6) )y = y 1gi<p-1,
L0 G
-t
G1 O
(2.7) n1. s 2<% <p .
o o

We have the fouoving general result nlating the
eigenvalues of [M*]"3 N* to those M-l N.

meop %.1 If D25, § <i <p, are
foNs, ngu ar, then

P
Aoty caov vy a0l g0 .

Proof:
Suppose MX = MNX for some eigenvalue A,
I X = (X}, Xppeens );p]‘, then for { = 1,.., p

B X5 = MKy Xy ) ¢ Hy X ¢ 5 X 0)

Kl 3 Jp = 0.
Partitioning Xy, 1 <1 <p, sccording to (1.3)
we have

xs“l, "‘»]'
N P A P

Hence,
=2 (6L x

021%3142 25413101 * E21%3541 * C25%3144’

t
D21%3143% } (Gp5 1%3541 * E25%3443 * Bog¥sges)

or

(D25 = A Epq4)) x35,7 = (D, = 2 E25) %3543
It (D5 - A £25) is nonsingulsr for ) £isp-l,

then Xy(e2 * X3g43 01 S5 <P -1, 50 thet

X' e [:1, Xyr Xgr Kgreey X4, FTRSLITTL VL SN 3t

is an eigenvector of (M')~IN* corresponaing to the
eigenvalue a.

Corollery 1If £;=0,1 <p, a0 Q01 24 <p,

are nonsingular, then
ALy e ndy)

3. Point-Jacobi Splitting for Laplace's Equation
Consider the system (1.6) where

) [F.l °1]
(3-1) 7 = — »
16

LIS |
(3.2) BRI -1\\ Bx,
-1
-1 A

A -1
72: -] k ,

Then, T* is matrix obtained from 8 S-point
discretization with mesh size h = 1/n+d of Laplace's
equation on unit square. Consider T =™ - N
where M = (4/p°)1. Then, N=M - T 50 that

MIN =1 - (t¥/8)T. Also, in (2.3),



o;‘r.‘, = 1 - (W/1)1, . Hence by Theorem 2.1,

A ) g e 11 - ) A1) )

c A )

A1 - (nra)T)

(3.3) {1- (R 7a) 2 (1))

AL Ny ua (D;‘liz)

n

= 0 - P A (DY b - e ).

Theorem 3.1
For the system given by (3.1),

o L) INe = p 7 lny .

Proof

By Theorem 1.1, A (T) ¢ A (M g A(T) U A (1)

$0 that the eigenvalues of T are real. We show thet
main {v} < min {u)
ve A (T*) ME A (Tz)
and
max {v} > max {u} .
ve A (T*) ue A (T,)

The result will then follow from (3.3)

Note

that ue A (T7) implies

= 1/n2{a - 2 cos (px /n) - 2 cos (qll /n)]

forp=1,2, cecp k=1

a:l,?,...,n-l .

Hence,

Now,

min {4} = (1/h?) [4 - 2 cos (wk) - 2 cos (wn)] ,

e (12)

max { u} = (1/h )[4 + 2 cos (w/k) + 2 cos (wn)]

uer (T2)

ve A (T*) implies

v= (1/08) [4 - 2 cos (pa/n) - 2 cos (qx /n)

forp,a=1, ..., n=1.

min (v} = (1/n%) {6 -4 cos (x/n)}

ve A (T*)

and

max (v} = (/1) {6« 8 cos (x/n) ).
ve A (TY)

4. tional Results

We solve the system (3.1) with the splitting
(2.2) where

01:L1L§ e 1 21,2,

is the incomplete Cholesky factorizetion of Rj and
F2, respectively, in (3.1{. We vary the integer k
in (3.2) to determine if the iteration count is
invariant to k thus, 8 theorem such as Theorem 3.1
might hold. Table 1 records the results with A& =
1/31 and & = 1/65 for Laplace’s equation Au = 0
and u = 2 on boundary

Table 1
(3 iterstions
0 648
5 644
15 642
25 642
30 642
35 642
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